

Mark Scheme (Results)

Summer 2024

Pearson Edexcel GCE In A Level Further Mathematics (9FM0) Paper 4C Further Mechanics 2

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024
Question Paper Log P75691
Publications Code 9FM0_4C_2406_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response</u> they wish to submit, examiners should mark this response.

 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- dM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
 N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

M(A) Taking moments about A

N2L Newton's Second Law (Equation of Motion)

NEL Newton's Experimental Law (Newton's Law of Impact)

HL Hooke's Law

SHM Simple harmonic motion

PCLM Principle of conservation of linear momentum

RHS, LHS Right hand side, left hand side

Questi on	Scheme	Marks	AOs
1a	$\int \frac{96}{\left(3t+5\right)^3} \mathrm{d}t = \int 1 \mathrm{d}v \Rightarrow v = \dots$	M1	2.1
	$\Rightarrow -\frac{96}{2\times3\times(3t+5)^2}(+C) = v$	A1	1.1b
	Use limits $v = 0, t = 0$	M1	1.1b
	$\Rightarrow v = \frac{96}{6 \times (5)^2} - \frac{96}{6 \times (3t+5)^2} = \frac{16}{25} - \frac{16}{(3t+5)^2} $ *	A1*	2.2a
		(4)	
1b	$t \to \infty \Rightarrow v \to \frac{16}{25} (= 0.64)$	B1ft	2.2a
		(1)	
1c	$\int 1 dx = \int \frac{16}{25} - \frac{16}{(3t+5)^2} dt \Rightarrow x = rt + s \frac{1}{3t+5}$	M1	2.1
	$x = \frac{16}{25}t + \frac{16}{3(3t+5)}(+D)$	Alft	1.1b
	$x = \left[\frac{16}{25}t + \frac{16}{3(3t+5)}\right]_0^2$	M1	1.1b
	$x = \left(\frac{32}{25} + \frac{16}{3(11)}\right) - \left(\frac{16}{3(5)}\right) = \left(\frac{192}{275}\right) = 0.70 \text{ or better}$	A1	2.2a
		(4)	
Total 9 marks			

Notes:			
1a	M1	Form a differential equation in v and t and integrate. Must attempt integration of $\frac{k}{(3t+5)^3}$. RHS can be implied.	
	A1	Correct integration. Ignore any limits. Accept without constant of integration.	
	M1	Use $v = 0$, $t = 0$ as limits in a definite integral or to find the constant of integration	
	A1*	Obtain given answer in the form $v = p - \frac{q}{(3t+5)^2}$ from correct working. Accept if correct form given and values of p and q stated separately. Must have " $v =$ ".	
1b	B1ft	Follow through their <i>p</i>	

1c	M1	Form a differential equation in x and t and integrate to obtain $rt + s \frac{1}{3t + 5}$ where r and s are rational
	A1ft	Correct integration. Ignore limits and condone no constant of integration. Follow through their p and their $-\frac{q}{3}$
	M1	Use $x = 0$, $t = 0$ as limits in a definite integral or substituted to find the constant of integration and find x when $t = 2$
	A1	0.70 or better. (0.698181)

Ques tion		Scheme	Marks	AOs	
2(a)	Momen	nts about ED	M1	2.1	
	e.g. $4 \times 4a \times 2a \cos 30^{\circ} + 2 \times 4a \times 4a \cos 30^{\circ} = 7 \times 4a \times d$			1.1b 1.1b	
	$32\sqrt{3}a^2$	A1*	1.1b		
			(4)		
2(b)	Momen	nts about C	M1	3.1a	
	$8a \times F = \left(4a\cos 30^\circ - \frac{8\sqrt{3}}{7}a\right) \times W$			1.1b	
	$F = \frac{3\sqrt{2}}{2}$	$\frac{\sqrt{3}}{8}W$	A1	1.1b	
	(3)				
			Total 7	marks	
Notes:	Notes:				
2a	Dimensionally correct equation with required terms. Accept use of a parallel axis. Accept equivalent mass ratio e.g. 4a replaced by 1				
	A1	Unsimplified equation with at most one error. Allow distances in t sin 60° or cos 30° or equivalent.	erms of		
	N.B. Repeated use of an incorrect distance is only one error. Correct unsimplified equation. Allow distances in terms of sin 60° or cos 30° or equivalent		or		
	A1*	Obtain given answer from correct working including reference to	d.		
2b	M1	Dimensionally correct equation with required terms and no extras Equation should be of the form $\lambda F = (\mu - d) W$			
	A1	Correct unsimplified equation			
	A1	0.19W or better (0.185576W)			

Ques tion		Scheme	Marks	AOs	
3a		$ \begin{array}{c c} C & & & & \\ \hline & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $			
	Resolve	e vertically	M1	3.3	
	$R\sin\theta$	= mg	A1	1.1b	
	Horizon	ntal equation of motion	M1	3.3	
	$R\cos\theta$	$= ma(= mr\omega^2)$	A1	1.1b	
	Solve for	or a	DM1	2.1	
	$\frac{g}{a} = \tan \theta \Rightarrow a = \frac{4}{3}g$				
			(6)		
3b	$8d\omega^2 = \frac{4}{3}g \Rightarrow \omega = \sqrt{\frac{g}{6d}}$			3.4	
	Use of	M1	1.1b		
	$T = 2\pi \sqrt{\frac{6d}{g}}$ oe OR $15\sqrt{\frac{d}{g}}$ or better				
	(3)				
			Total 9	marks	
Notes:					
3a	M1	Dimensionally correct equation. Condone sine / cosine confusion	for their ar	ngle	
	A1	Correct unsimplified equation			
	M1	Dimensionally correct equation. Condone sine / cosine confusion Accept any correct form for the acceleration.	for their ar	ngle.	
	A1	Correct unsimplified equation. Accept any correct form for the acc	celeration.		
	DM1	Eliminate R and θ to solve for a . Dependent on both previous M m	arks.		
	A1	Correct only (or exact equivalent)			
3b	M1 Use $a = r\omega^2$ or $a = \frac{v^2}{r}$ to obtain ω or v $\left(v = \sqrt{\frac{32dg}{3}}\right)$				

M1	Complete method to find T
A1	$15\sqrt{\frac{d}{g}} \text{ or better - must be in terms of } d \text{ and } g. \text{ Accept } T = \frac{2\pi}{\sqrt{\frac{g}{6d}}}$

			Marks	AOs
4a	Moment	is about the y-axis: $\int (\rho) xy dx$	M1	3.1a
		M1	2.1	
	$= \left[-\frac{4}{27} \left(36 - \frac{9x^2}{4} \right)^{\frac{3}{2}} (\rho) \right]_0^4 (= 32(\rho))$			1.1b
		$\overline{x} = \frac{\int xy dx}{6\pi}$	DM1	3.1a
		$\overline{x} = \frac{32}{6\pi} = \frac{16}{3\pi} \qquad *$	A1*	2.2a
			(5)	
4b	Moment	as about the x-axis: $\int \frac{1}{2} y^2(\rho) dx \left(= \frac{1}{2} (\rho) \int 36 - \frac{9x^2}{4} dx \right)$	M1	3.1a
		$= \frac{1}{2}(\rho) \left[36x - \frac{3}{4}x^3 \right]_0^4 \left(= \frac{1}{2}(\rho)(144 - 48) = 48(\rho) \right)$	A1	1.1b
		$\overline{y} = \frac{\int \frac{1}{2} y^2 dx}{6\pi}$	DM1	2.1
		$=\frac{48}{6\pi} \left(=\frac{8}{\pi}\right)$	A1	2.2a
			(4)	
4c	Correct	use of trigonometry	M1	3.1a
	$\tan \theta^{\circ} =$	$\frac{their \overline{y}}{4 - \frac{16}{3\pi}} \left(= \frac{6}{3\pi - 4} \right)$	A1ft	1.1b
	θ :	= 47.9 (48 or better)	A1	1.1b
			(3)	
			Total 12	marks
Notes	:			
4a	M1	Correct method for moments about the x-axis: $\int (\rho) xy dx$ or \int	$(\rho)\frac{1}{2}x^2\mathrm{d}y$,
		Integrand should be in one variable only. $(2)^{\frac{3}{2}}$		
	M1 Integrate to obtain $k(A-Bx^2)^{\frac{1}{2}}$ Ignore limits and / or constant of integration			

	A1	Correct integration with correct limits seen or implied.	
	DM1	Complete method to obtain \bar{x} . Dependent on first M1.	
	A1*	Obtain given answer from correct working	
4b	M1	Correct method for moments about the y-axis: $\int (\rho) xy dy$ or $\int (\rho) \frac{1}{2} y^2 dx$	
	A1	Correct integration with correct limits seen or implied.	
	DM1	Complete method to obtain \bar{y} . Dependent on previous M1.	
	A1	Correct exact equivalent	
4c	M1	Correct use of trigonometry to find a relevant angle	
	A1ft	Correct unsimplified expression for $\tan \theta$ or its reciprocal. Follow their \overline{y}	
	A1	48 or better (47.8823) 0.836 radians is A0	

Ques tion			Marks	AOs
5a	$a\omega^2 = 1$	18	B1	3.4
	Use $v^2 = \omega^2 \left(a^2 - x^2 \right)$			3.4
	2.	$4^2 = \omega^2 \left(a^2 - 0.3^2 \right)$	A1	1.1b
	1	equation in a only and solve for a $\frac{a}{-0.09} = \frac{18 \times 25}{144} (18a^2 - 5.76a - 1.62 = 0)$	M1	3.1a
	$\Rightarrow a =$	0.5 *	A1*	1.1b
			(5)	
5b	Solve f	for ω and use max speed = $a\omega$	M1	3.4
	Greates	st speed = $0.5 \times 6 = 3 (m s^{-1})$	A1	1.1b
			(2)	
5c	v = aa	Osin ωt OR $v^2 = \omega^2 (a^2 - x^2)$ and $x = a \sin \omega t$	B1ft	3.3
	$\Rightarrow 2 = 3\sin 6t (t = 0.1216)$ OR $\frac{\sqrt{5}}{6} = 0.5\sin 6t (t = 0.14017)$		M1	1.1b
	$S = \frac{2\pi}{6} - 4t$ OR $S = 4 \times 0.14017$			3.1a
	= 0.5607			1.1b
			(4)	
	Total 11 mark			
Notes:				
5a	B1	Use the model to state correct equation for greatest acceleration. A	ccept ±18.	
	M1	Use the model to form a second equation in a and ω		
	A1	Correct unsimplified equation with x and v substituted.		
	M1	Solve the simultaneous equations to obtain <i>a</i>		
	A1*	Correct only from correct working. Must have used positive ω^2 .		
5b	M1	Complete method using the model to obtain greatest speed E.g. $v = \sqrt{\omega^2 (0.5^2 - 0^2)}$		
	A1	Correct only		
5c	B1ft Set up a correct model to find time when speed is 2. ft their ω (If starting from O then $ v = a\omega \cos \omega t$)			

M1	Solves their equation(s) to obtain a critical value for t $(2 = 3\cos 6t \Rightarrow t = 0.14017)$ (condone degrees: $41.8^{\circ}/48.2^{\circ}$)	
M1	Correct method to obtain S; must be in radians $(S = 4 \times 0.14017)$	
A1	0.56 or better	

Ques tion		Scheme	Marks	AOs
6a	Mass =	$\int_0^6 \pi 2^2 \lambda (x+2) dx$	M1	3.4
	=	$=4\pi\lambda\left[\frac{x^2}{2}+2x\right]_0^6$	A1	1.1b
	$=4\pi\lambda\left(\frac{36}{2}+12\right)=120\lambda\pi(\mathrm{kg}) *$			2.2a
			(3)	
6b	Momer	at about y-axis = $\int_0^6 4\pi x \lambda (x+2) dx$	M1	2.1
		$= 4\pi\lambda \left[\frac{x^3}{3} + x^2 \right]_0^6 \left(= 4\lambda\pi \left(72 + 36 \right) = 432\lambda\pi \right)$	A1	1.1b
	Distanc	the from $O = \frac{\text{their } 432\lambda\pi}{120\lambda\pi}$	DM1	3.1b
		$=\frac{432}{120}=3.6$ (cm) *	A1*	2.2a
			(4)	
6c	Use of $\frac{3}{8} \times 3$		B1	1.2
	Moments about a diameter of the base			3.1b
	$120\lambda\pi \times 3.6 + \left(6 + \frac{3}{8} \times 3\right) \times \frac{2}{3}\pi \left(3\right)^{3}\lambda = (120 + 18)\pi\lambda d$		A1 A1	1.1b 1.1b
	$\left(d = \frac{747}{184} = 4.0597\right)$			
	tan α° :	$=\frac{2}{\text{their }d}$	M1	2.1
		$\alpha = 26.2$	A1	1.1b
			(6)	
			Total 13	marks
Notes:				
6a	M1	Correct method for total mass		
	A1	Correct integration with limits seen or implied		
	A1*	Obtain given answer from correct working		
6b	M1	Correct method for moments about y-axis (condone missing a	π and λ)	

	A1	Correct unsimplified integral	
	DM1	Correct method to obtain distance from <i>O</i> ; dependent on first M.	
	A1*	Obtain given answer from correct working	
6c	B1	Use of correct formula for c of m of a hemisphere, seen or implied	
	M1	Condone use of a parallel axis. Require relevant terms and dimensionally correct. Condone common factors cancelled throughout	
	A1 A1	Unsimplified equation with at most one error. Incorrect volume of hemisphere is only one error Correct unsimplified equation	
	M1	Correct use of trigonometry to obtain α	
	A1	26 (26.2265) or better	

Question	Scheme	Marks	AOs
7a	$r\cos\theta$ θ mg O		
	Energy equation	M1	3.1b
	$\frac{1}{2}mU^2 + mgr(1-\cos\theta) = \frac{1}{2}mv^2$	A1	1.1b
	$v^2 = U^2 + 2gr(1 - \cos\theta)$	A1	1.1b
		(3)	
7b	Equation for circular motion at B	M1	2.1
	$mg\cos\theta - R = \frac{mW^2}{r}$	A1	1.1b
	Use $R = 0$: $mg \cos \theta = \frac{m(U^2 + 2gr(1 - \cos \theta))}{r}$	M1	3.3
	$rmg\cos\theta = m\left(\frac{2rg}{3} + 2gr(1-\cos\theta)\right) \left(\Rightarrow\cos\theta = \frac{8}{9}\right)$	A1	1.1b
	$\Rightarrow W^2 = rg\cos\theta = \frac{8}{9}rg *$	A1*	2.2a
		(5)	
7c	Energy equation	M1	3.1b
	From B: $\frac{1}{2}mV^2 = \frac{1}{2}mW^2 + mgr\cos\theta$ or from A: $\frac{1}{2}mV^2 = \frac{1}{2}mU^2 + mgr$	A1	1.1b
	$V^{2} = v^{2} + 2gr\cos\theta = \frac{8rg}{9} + \frac{16rg}{9} = \frac{8rg}{3}, V = \sqrt{\frac{8rg}{3}}$	A1	1.1b
		(3)	
7d	V α $W\cos\theta$		

Form an equation in α	M1	3.1b
$\cos \alpha^{\circ} = \frac{W \cos \theta}{V} \left(= \frac{\frac{8}{9} \sqrt{\frac{8rg}{9}}}{\sqrt{\frac{8rg}{3}}} = \frac{8\sqrt{3}}{27} \right)$	A1ft	1.1b
$\alpha = 59(.12276)$	A1	1.1b
	(3)	

Total 14 marks

Notes:		
7a	M1	Equation for conservation of mechanical energy. All terms required and no extras; dimensionally correct. Condone sine / cosine confusion and sign errors.
	A1	Correct unsimplified equation
	A1	Or equivalent with v^2 as subject
7b	M1	Equation for circular motion. Dimensionally correct. Condone sine / cosine confusion and sign errors. Condone if $R = 0$ seen or implied at this stage.
	A1	Correct unsimplified equation
	M1	Use $R = 0$ in a relevant equation to obtain equation in r, g and $\cos \theta$ or W
	A1	Any correct equation in r , g and $\cos \theta$ or r , g and W E.g. $W^2 = \frac{2gr}{3} + 2gr - 2W^2$
	A1*	Obtain given result from correct exact working
7c	M1	Complete method to find the speed, e.g. by using conservation of energy or projectile motion. All terms required and no extras; dimensionally correct.
	A1	Correct unsimplified equation(s)
	A1	Any equivalent form.
7d	M1	Complete method to form a trig ratio for α
	A1ft	Correct use of their values to obtain a ratio for α . Ft their V . $\left(\sin \alpha = \frac{\sqrt{537}}{27} = 0.858, \tan \alpha = \frac{\sqrt{179}}{8} = 1.67\right)$
	A1	59 or better